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The article is divided in 2 sections.  

The first section discusses charge densities in conductors and semiconductors generally and 

charge flow. The conservation of charge principle is applied to derive the equation of continuity 

when charges flow. 

In the second section we will derive the equation describing the flow of a variable current in 

straight wires from Newton`s second law of motion plus Weber`s electro-dynamics. This gives 

accurate information on the surface and volume components of charge distribution and charge 

movement during signal propagation in dc, ac and transient situations. The derivation shows how 

in special situations electromagnetic signals can propagate at light speeds. 

At the end of the section we discuss the limitations of the Maxwell electrodynamics (classical 

electrodynamics) especially with slowly varying effects. Finally, we discuss how the 

electromagnetic field can be derived from Weber‟s action–at–a–distance theory and how this 

field may be extended to rapidly varying effects and radiation by introducing time retardation. 

 

1. Surface and Volume Charge Densities and Continuity in 

Conductors and Semiconductors 
 

In Chapter 2, Section 2.21 we saw how excess charge on an insulated spherical conductor 

spreads uniformly around to reach static equilibrium. And in Chapter 1, Section 1.1 we learned 

that there cannot be a volume charge inside a conductor in the steady-state and that all excess 
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charge resides on the surface. The examples relate to situations in electrostatics and electric 

circuits (in the dc steady-state). 

In courses of electric circuits, transmission lines and electronic circuits, one frequently 

encounters different situations which involve visualizing the formation, motion and decay of 

volume and surface charge densities. Is the process steady as in the wires of a simple dc 

electrical circuit ? Is the process transient prior to reaching a steady-state ? Or is it a quasistatic 

situation ? Are the charges “excess” or are they the charges of the material itself or are the 

charges termed “excess” when they have migrated from other portions of the closed system 

comprising a circuit and all its elements ? 

The time it takes for volume charge densities to decay in conductors in isolation and circuits is 

called the relaxation time, a time which is of the order of 10
-14

 seconds. 

The analysis of such transient and quasistatic phenomena requires making macroscopic 

connections to microscopic processes.  

We begin by reviewing a few definitions and principles involved in current and the flow of 

charge and then explore the relations (continuity equations) between charge density and current 

density functions in various circuit operation situations. 

Conservation of electric charge 

 
The conservation of electric charge requires that the net charge is conserved under all conditions; 

that is the algebraic sum of the charges within a closed system is constant. Mathematically, 

 for any closed system. 

Current I and Current Density J 

We usually consider current along a well-defined path, like a wire. If the current is steady – that 

is, unchanging in time – it must be the same at every point along the wire, just as with steady 

traffic the same number of cars must pass, per hour, different points along an  unbranching road. 

A more general kind of current, or charge transport, involves charge carriers moving around in 

three-dimensional space. To describe this we need the concept of current density. 

Consider a current across a small plane surface S of area ∆a (see Fig.(a)) fixed in some 

orientation, whose unit normal is n and whose direction is considered as that of a current flow 

called positive across S. (The unit normal vector is the most elegant way to describe the direction 

of a thin patch of surface and the reader is urged to take a small rectangular patch of paper and 

slide it all over the outer surface of a curved bottle or a curved glass flask and note how the 

direction of the normal on the paper best represents the direction of a tiny patch on continuously 

curved surface areas). 
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There is a velocity v1 of all the charges of a certain kind (electrons, say) in the near vicinity of S 

when ∆a becomes sufficiently small in all its dimensions i.e shrinks about a point P in ∆a. It may 

not be that each charge has the same velocity as every other charge near P, keeping in mind that 

in general, in conductors there are millions and millions of charges having a random movement   

(see Chapter 1, Section 1.17). So, the velocity v1 in general may mean an average over all 

charges in a neighborhood of P at a given time. 

How many particles pass through the frame in a time interval ∆t ? 

The net charge (maybe millions of electrons, say) crossing S in an infinitesimal time interval ∆t, 

due to the motion of carriers whose charge is q1 and whose number per unit volume is n1, is the 

total charge of the carriers contained in the oblique prism Fig. (b).  

If ∆t begins at the instant shown in Figs. (a) and (b), the particles destined to pass through the 

frame in the next ∆t sec will be just those now located within the oblique prism in Fig.(b). This 

prism has the face area ∆a as its base, an edge length v1∆t which is the distance any particle will 

travel in a time ∆t. Particles outside the prism will either miss the window or fail to reach it.  

The volume of the oblique prism dV is the product base × altitude or (v1∆t) ∆a cos α, where α is 

the angle between v1 and n. A rectangular prism with the slanting edge dimension (v1∆t) cos α as 

its edge length is shown in the figure by projecting the oblique prism. Briefly in vector notation 

                                                  (1) 
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The infinitesimal charge crossing the surface is  

 (where n1 is the no. of charge carriers per unit volume)        (2) 

The current across S is therefore 

                                                       (3) 

where ∆I  is the symbol used since the current is that which crosses ∆a. This equation becomes 

exact when ∆a approaches zero by shrinking about the point P. So, in differential form (where 

Algebra ends and Calculus begins !) 

                                                       (4) 

The product  

            J                                                       (5) 

which appears in Eq. (5) is the vector which we shall call the current density. Substitution of (5) 

in (4) gives  

    J                                                      (6) 

Equation (6) is more general than Eq. (4) and is applicable for example, when more than one 

type of charged particle participates in the current flow, as is the case with electrolytic solutions. 

In that case, Eq. (5) must then be generalized to  

            J                                                       (7) 

Eq.(6) may be obtained from a picture in which no discrete charges appear at all, but instead a 

charge density ρ (also sometimes called the volume charge density) is conceived to move with a 

velocity v being functions of the coordinates and perhaps of the time. 

Since the product  of Eq. (5) is a charge density when viewed macroscopically, it is easy to 

see that in terms of moving charge density ρ1 we may write in place of Eq. (5) 

            J                                                       (8) 

The validity of Eq. (8) rests upon the conservation of electric charge and upon the physical 

postulate that the velocity function vi  may be considered continuous either for particles or for 

charge density. That the validity of Eq. (8) is established is important because it also establishes 

the validity of the interior of current carrying wires to be neutral in the steady-state as will be 

discussed soon. From the above postulates it follows that the current across an arbitrary 

infinitesimal surface depends upon the orientation of the surface in the manner expressed by Eq. 

(6). This equation may be considered to be the defining equation for the current density vector. 

Eqns. (7), of which Eq. (5) is a special case, and Eq. (8) are then simply relations between J and 
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the velocities that produce it. Eq. (6) may be integrated to yield the total current across a finite 

surface S (which is not closed but open) 

    J                                                       (9) 

 

The neutrality of a current carrying wire 

It may seem from the postulates of the previous section that the charged particles or charge 

density exist with a net macroscopic charge density as the flow of electrons in between the 

electrodes of a vacuum diode or of a klystron. 

In the Appendix A we gave a proof that the interior of a current carrying wire in the steady-state 

is neutral. In that situation what was flowing ? It should be noted carefully that current density 

can perfectly well exist in the absence of any net macroscopic charge density. There may be both 

positive (lattice ions) and negative elementary particles present in a conductor in such numbers 

that the resulting net charge in every macroscopic element of volume vanishes.  

If charges of both sign are free to migrate simultaneously, they make contributions of the same 

sign to current density, since the sense of vi  reverses with the sign of qi.  

 

The Equation of Continuity- a general form 

The conservation of electric charge requires that the charge density and current density functions 

be related
(Electricity and Magnetism by Edson Ruther Peck, McGraw Hill, 1953)

. Either may exist without the 

other (excess point charge placed on an insulated conducting sphere and static equilibrium is 

reached (Chapter 2, Section 2.21), and the current in the interior of a wire (Chapter 1, Section 

1.18)), or both may exist together (during the time when the excess point charges placed migrate 

to spread on the surface of an insulated conducting sphere to reach static equilibrium). But, this 

does not mean that they are quite independent of one another.  

We can derive a relation between them for systems where the volume density of charge ρ and the 

current density J are finite and together completely describe the charge and current of the system. 

The functions are assumed to be continuous, so that any macroscopic discontinuities are treated 

simply as regions of rapid change (say, at the boundary of two dissimilar metals).  

We will then discuss three useful applications of the principle of conservation of charge to obtain 

the equations of continuity for a current carrying wire, the surface current of a cylindrical 

conductor, and for a p-type semiconductor. 
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Consider a volume V enclosed by a fixed surface S and let n be the unit normal to S everywhere 

out from V. If currents are flowing, there may be a net rate of change of charge within V, for in 

general the net current in or out of V will not vanish.  

An expression for this net current is obtained at once from Eq. (9). Considering the current 

positive if outward from V (an example of how one should define the direction of a current), we 

have  

    J                                                       (10) 

where the integral symbol used represents that the surface over which the integration is to be 

carried out is “closed”. From the definition of current, I is the rate at which charge flows out 

from V across S; and by conservation of charge, I is the rate at which the net charge q in V is 

decreasing (no charge can flow away from a place without diminishing the amount of charge 

that is there). Thus 

                                                         (11) 

so that 

    J                                                  (12) 

For the reader who has done a course in DC circuit theory, Eq. (11) may come as a bit of a 

surprise because current is conserved all around in a DC circuit in the steady-state. Our 

derivation of the continuity equation is more general and includes situations when there may be a 

local generation and/or neutralization of charged particles. We will gain more insight when we 

discuss the continuity equations for conductors and semiconductors. 

Now, q may be expressed in terms of charge density ρ: 

                                                        (13) 

In this way, we are led to an integral equation connecting J and ρ: 

                                    J                                   (14) 

This integral equation Eq. (14) holds for any arbitrary volume V with its enclosing surface S, and 

requires the existence of a differential relation between J and ρ which holds at every point of 

space. 

We now obtain a differential relation between J and ρ. Consider a small rectangular box whose 

edges are parallel to the coordinate axes and whose dimensions are ∆x, ∆y and ∆z. This box, is to 
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be only a mathematical construction made at some arbitrary point of the system P(x,y,z), which is 

taken as a corner point of the box; and for convenience, let P be that corner point having lowest 

algebraic values of x, y, and z. 

 

Consider the current out from the box through the two opposite faces A and B which are parallel 

to the xy plane. Only the z component of the current density will contribute to this current; a 

positive z component of current density gives an inward current through A and an outward 

current through B. Let a general point on face A have coordinates (x + α ∆x, y + β ∆y, z), and let a 

corresponding point on B have coordinates (x + α ∆x, y + β ∆y, z + ∆z). Here α and β are 

fractions running from zero to unity (e.g. 10 slices of 0.1 or, 100 slices of 0.01), and they will 

serve as the variables in the computation of the current from the two faces A and B of the box. 

The values of (x,y,z), and of (∆x,∆y,∆z) will be considered fixed during the computations. 

We specify that the box shall be small, so that the current density over the faces A and B may be 

expressed by a Taylor‟s expansion in the variables α and β. This expansion is, for the z 

component of the current density, as follows. On A,  

    

                    + quadratic and higher-order terms in (  and ( )          (15) 

   

                    + quadratic and higher-order terms in ( , ( ) and     (16) 

We have used the first-order terms of the expansion, that is, to remember that the current density 

is a function of position, in order to get a nonzero answer for the net current from the box; but we 
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shall neglect quadratic and higher-order terms, assuming that ∆x, ∆y, and ∆z are to be considered 

as small as necessary so that the remainder of the series expansion becomes as small as we 

please relative to the first-order terms.  

We now use these expansions to compute the current through faces A and B: 

                            (17) 

Now the element of area on the faces of A and B has the form 

                    (18) 

Therefore, by a substitution of  from Eq. (16) in Eq. (17) and using Eq. (18) 

 

            (19) 

where all factors which are constant during the integration have been taken outside the integral 

signs. These integrals have the values 1, ½, ½, and 1, respectively because 

, and similarly , and , and similarly 

.  

Thus the current out through B is  

      (20) 

in which the highly explicit notation has been simplified.  

By a similar process the current into the box through face A is: 

            (21) 

which is the same as  except that it lacks the last term. Thus the net current out from the box 

through the pair of faces A and B is  

                                   (22) 
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By a similar process the net current out of the box through the other two pairs of parallel faces 

may be obtained. The symmetry of expressions (Eq. (22)) shows that the results will be  

          (23) 

The entire current out is therefore 

                                               (24) 

This current is at the expense of a decrease of the net charge in the volume V which was 

expressed by Eq. (11) which we repeat for convenience. 

                                                         (11) 

If the volume density of free charge is ρ(x,y,z) in the system, the net charge enclosed by the box 

may be found by a volume integration over the volume ∆V of the box: 

                    (25) 

The integration may be performed by making a Taylor‟s expansion of the ρ function. The labor 

involved is superfluous, here, because the limiting value of the integral as ∆x, ∆y, and ∆z 

approach zero is simply that due to the zero-order term in the Taylor‟s expansion, and may be 

written down at once: 

   q = ρ(x,y,z) ∆V = ρ(x,y,z) ∆x ∆y ∆z   (26) 

Therefore,  

    ρ(x,y,z) ∆x ∆y ∆z    (27) 

where we have converted the total differential into a partial differential because the volume 

charge density varies over both time and space. 

The current out of the volume V (Eq. 24) is equal to the rate of decrease of charge q in the 

volume (Eq. 27): 

  ρ(x,y,z) ∆x ∆y ∆z                  (28) 

Therefore,  

                 (29) 
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This is called the equation of continuity. In the abbreviated notation of vector calculus, it is 

written 

   div. J +                (30)  

which is a differential relation between J and ρ at each and every point in the conductor. 

 

Charge within a conductor in isolation  

Consider the case of the spread of excess point charge on a spherical conductor (Chapter 2, 

Section 2.21). We learned in Chapter 1, Section 1.14 that all net electric charge on a conductor 

resides on the surface of the conducting material and in Chapter 5 Section 5.22 that the time they 

take to dissipate is called the relaxation time. This statement remains true for a homogeneous 

(consisting of parts or regions similar to each other; for example, uniform structure and density 

of a metal), isotropic (whose physical properties have the same value when measured in different 

directions), linear (the current always passes in the same manner between two portions of its 

surface also called the „electrodes‟ and whose resistance may be expressed by Ohm‟s Law) 

material even when currents are flowing. 

Such a material is characterized by (Chap. 1, Sect. 1.17 and Note in Chap. 2, Sect. 2.15) 

   J = σE       (31) 

and, (Chapter 2, Section 2.27) 

   D = εE       (32) 

where σ and ε are constants. The differential equation for the electric displacement D is (Chapter 

“Electrostatics”, Ref.[16]): 

             (33) 

This equation is combined with the equation of continuity (Eq. (29)  

             (34) 

Using Eqs. (32) and (31) in Eqs. (33) and (34), respectively, we obtain 

            (35) 

and 
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           (36) 

Hence the charge density function ρ satisfies the partial differential equation  

          (37) 

The general solution of this equation is 

          (38) 

where   is an arbitrary distribution of charge density supposed to exist in the material 

at time t = 0. 

It is important to note from the equation (38) that such a supposed charge distribution dies out at 

all points (note the x, y and z variables in the equation) within the conductor at a common rate 

 as t increases, and asymptotically approaches zero. 

The quantity  is called the relaxation time of the material and is a convenient measure of the 

speed with which any charges initially in the material would die out. 

If the volume charge density (excess) within a homogeneous, isotropic, linear conducting 

material can only decay, as in isolated metallic conductors and semiconductors, it must actually 

be zero there: 

   ρ = 0        (39) 

Nothing in this theorem forbids the permanent existence of surface density of point charge on 

conductor boundaries or on an interface between two conducting materials (see Chapter 2, 

Section 2.15); for the equations used in the proof assume continuity of the functions involved, 

and thus are valid only within the body of the material. 

In the situation described in Chapter 2, Section 2.21 when “excess” charge  (which means that 

the charge is an excess over the charge density of the millions and millions of conduction band 

electrons of the conductive sphere) is placed on the conductive sphere, then electric fields are set 

up within that cause the charges to migrate towards the surface, and since the resistance of the 

sphere has a finite value (not zero), there will be dissipative power losses until final static 

equilibrium conditions prevail; no excess charge within the conductive sphere except on its 

surface and no electric field within, but the sphere will acquire a potential and an electric field 

surrounds it. 

The “excess” point charge will remain on the surface unless and until it were to be discharged by 

connecting the sphere to the earth, or it were to discharge to the atmosphere by the phenomenon 

described in Chapter 1, Section 1.25. 

We will now discuss the continuity equation obtained from the conservation of charge principle 

usually encountered in conductors, wires and semiconductors in circuits. 
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The continuity equation for a steady current in a DC circuit  

We had devoted almost the entire Chapter 1 to a discussion of the conduction processes in simple 

electric circuits. It was established that the electric field in a current carrying conductor is due to 

surface (point) charges and also interface (point) charges (see Chapter 2, Section 2.15) at the 

boundaries of wires and resistors or, in general between two conductors of different resistivities.  

Professor Rainer Muller in the paper “A semi quantitative treatment of surface charges in DC 

circuits”, Am. J. Phys., Vol. 80, No. 9, September 2012, pp 782-788, identifies two types of 

surface charges; one called Type-I which occur at the boundary of two conductors with different 

resistivities and the other Type-II which reside at the surface of conductors which sit at the 

boundary between a conductor and the surrounding medium (usually air).  

In the important note below Fig. 1.23 it was stated that the surface charges are maintained by 

drifting charges due to the source of the emf. The surface and interface charges are “excess” 

charges, small in number in comparison to the mobile charge densities of the material of 

conductors and resistors. It is the surface charge which produces a uniform electric field within 

the conductors, wires and resistors in simple dc circuits. The analysis of the flow of these small 

numbers of surface and interface point charges is fairly complex and we will not make such an 

analysis. The steady current in a simple dc circuit is the flow of the millions of conduction band 

electrons already existing in the wires and resistors. These circuit elements have a volume charge 

density at all times. They are not “excess” and form one part of the neutral system of the 

conducting structure; the other part being the lattice ions.  

When switched ON, it is the volume charge density which moves with a drift velocity in every 

elemental volume of the conducting wires and resistors, and when steady-state is reached, during 

this flow of the conduction band electrons, the interiors of the wires and resistors remain neutral 

despite the driving electric field and the current it produces. What this means is that ideally 

approximated, there is no “excess” charge present anywhere though the current is a start-stop 

motion of millions and millions of conduction band electrons everywhere within with a drift 

superimposed (Chapter 1, Section 1.18); no volume V(interior) is emptied of charge at any 

instant during the steady-state. What about the surface charges. It seems likely that the surface 

charges got there carried by some local “excess” volume charge drifts. However, the excess 

charges are “local” to the system of the circuit comprising the source of emf say, a battery, the 

wires and the resistors. When the circuit is switched OFF, the surface charges will reunite with 

the charges on the emf source taking a volume charge density drifting migratory route.  

Consider the current density J in an isotropic medium as given by the relation Eq. (31) 

J = σE       (31) 

Consider the case that the material is linear and homogeneous (say, a copper or tungsten wire), in 

which case the conductivity σ is constant, at least by subregions. For such a material, the  

“excess” volume charge density is zero; and this being so at all times, the rate of change of 
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charge density also vanishes (ignoring the small drifting charges that comprise the static surface 

charge provided the circuit geometry is not altered by twisting it when in operation) at all points 

inside the conducting material: 

          (40) 

The equation of continuity (Eq. (29), (remembering that this relates the charge and current 

density functions) 

                 (29) 

then shows that the current density function in the region satisfies a modified differential form of 

the equation of continuity 

                  (41) 

What Eq. (40) indicates is that for every volume charge ∆ρ leaving every elemental volume V 

across its enclosing surface in ∆t there is a corresponding equal volume charge ∆ρ entering it in 

∆t, so ∆ρ− ∆ρ = 0 or, . Another way to state it is that there is no unpaired charge 

density (lattice ion and conduction electron). In the absence of emf in a region in the circuit (say, 

away from the source or battery and within a small section of the conductor or a resistor), the 

total electric field E, may be expressed in terms of a scalar potential function U; 

             (42) 

Eqs. (42), (31) and (41) characterize the current flow within a region of a homogeneous, linear, 

isotropic conductor where there is no emf. If a dc circuit of a battery and a wire is laid in a 

straight line along the x-axis then evidently, the presence of surface charges will guarantee that 

the total field E will be a constant ‘Ex„ along the axis in the region. Therefore, the solution of Eq. 

(41) gives Jx = a constant, so using Eq. 31, we get 

Jx = σEx = I/A      (43)  

where σ is the conductivity of the wire, I is the current in the circuit and A the cross-sectional 

area of the wire. 

When combined, Eqs. (42), (31) and (41) also show that the potential function in such a region 

satisfies Laplace‟s equation
(2, and Electricity and Magnetism by Edson Ruther Peck, McGraw-Hill, 1953)

: 

                 (44) 

This is the same equation as holds for a region of an electrostatic system (which is seldom 

described in textbooks on circuit theory) when there is no charge density and where the electric 

inductive capacity ε is constant. I urge the reader to study how in a conductor carrying a steady 
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current, Laplace‟s equation (44) is true by referring to Chapter 1, Fig. 1.35, Ref.[8 (David J. 

Griffiths‟ Introduction to Electrodynamics) Chapter 2 Sections 2.3.1 and 2.3.3 and Chapter 3, 

Sections 3.1.1 and 3.1.2 with V in place of U] making note that in the interior of the neutral 

system of lattice ions and conduction electrons of the conductor,  ρexcess = 0. 

This is how the current in the simple circuit with a battery and a bulb is described as a “disk 

shaped section of the electron sea that has moved in every section of the wire” in Chapter 2, 

Section 2.20. The flow of the charges (or current) we have described is essentially an idealized 

continuous approximation where the disk shaped section of the electron sea moves everywhere 

in the region without creating pockets of “local excess” volume charge densities.  

And we had shown using Gauss‟s Law in Appendix A that the interior of a current-carrying wire 

in the steady-state is neutral. Once the potential function U is known for a given system, the 

problem is evidently solved, for Eqns. (42) and (31) together then yield the current density 

function of the mobile conduction band electrons.  

What about the very initial transient ? at circuit turn ON and circuit turn OFF ? Will there not 

be an excess volume charge density ? 

Yes, there will be an excess volume charge density which carries the charges that will migrate to 

the surface (as rings of charge for round conductor); but the transient will not last long and will 

eventually die out when the steady-state is reached.  

A similar situation will occur when the applied voltage is changed and when thermal equilibrium 

is disturbed caused by changes in ambient temperature. In these transient phases, ρexcess ≠ 0 and 

; eventually, however the excess charge density will die away. 

Does current vary with distance in a dc circuit ? 

In general, in simple dc circuits of a single loop there is no variation of current with distance in 

the steady-state if one were to ignore the tiny drifting current that may be associated with the 

very initial transient when volume charge densities may be present to supply the surface charges 

which will establish the electric fields in conductors and resistors. Drifting currents also occur 

when the circuit is switched OFF. 

 

The continuity equation for the surface current of a cylindrical conductor 

The surface current density K is by definition 

   where  is a ribbon of infinitesimal width running parallel to the 

flow of current dI. The current I is on the surface of a cylindrical conductor or in a cylindrical 
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shell either of radius a. In words, K is the current per unit width (Coulombs/m-sec) 

perpendicular to flow. 

 

In particular if the surface charge density is  in Coulombs/m
2
 and its velocity v in m/s, then  

  . (in Coulombs/m-sec) where the subscript „f „ (for σ) denotes free or 

excess charge. 

Now, the total current I is 

I = K × width = K × 2πa (the circumference of the cylinder) = 2πa  (in Coulombs/sec)       

          (45) 

The conservation of charge in the general form gave the equation of continuity (remembering 

that this relates the charge and current density functions) as div. J +   according to Eq. 

(30) or, equivalently . 

Following the logic used to derive the general form of the equation using Eqs. (24), (26) and (27) 

in the section “The Equation of Continuity- a general form” with   replacing 

 and 2πa  replacing ρ(x,y,z) ∆x ∆y ∆z, keeping in mind that there cannot 

be a flow of charge in the x and y (∆y →0) directions being a surface current, we can write 

          (46)  

and          (47) 

because the current is the time rate of surface charge flow out from an area  wide (annular) 

and the neutrality condition does not apply to the surface charge unlike in the interior. 

Therefore from (46) and (47) we can write the continuity equation  

        (48) 

for a cylindrical conductor with a surface current density. 

 

dl K 

x 
y 

z 
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Continuity conditions in transient, quasistatic and sinusoidal steady-state 

currents of resistive, capacitive and inductive circuits 

In Chapter 2, Section 2.6 we saw the evolution of fields and surface charges of an RC circuit. In 

the first 160 picoseconds when the discharge of a charged capacitor was initiated, the electric 

field vectors cause a movement of charges to the surface of the wires. Since the field vectors 

point in several directions during this period before the quasistatic discharging condition, volume 

and surface charge densities exist in the wire when the excess charge is conveyed to and 

dispersed from the surface; this means that the continuity equation Eq. 41 is not satisfied and the 

more general continuity Eq. 29 is applicable. 

In general, for time-varying signals including sinusoidal signal (steady-state) propagation in 

resistive, capacitive and inductive circuits and transmission lines, the continuity equation Eq. 41 

will not be satisfied mostly because of the processes of accumulation and dispersion of surface 

charges. 

In waveguides (Chapter 5, Section 5.22, Fig. 5.36(a) and Ref.[16]), surface charges appear by 

tiny current delivery mechanisms which is an excess volume charge density movement from the 

interior of the conducting plane. 

In Antennas, currents of volume and surface charge densities are ever flowing in the rods which 

was described by Hertz as a chain of Hertzian “dipoles” when adjacent charges do not 

completely cancel (volume charge density movement) and there is an accumulation of charge on 

the surface of the wire (see See Chapter 10, Section 10.10, The Hertzian (or Ideal) Dipole). 

 

Continuity equation for a p-type semiconductor 

When the conservation of charge principle is applied to a p – type semiconductor, the situation is 

different from that of a system comprising batteries, wires and resistors or simple electric 

circuits.  

In this we will see that the current in the volume V is due to a decrease or increase of the number 

of carriers in a short interval of time and  , therefore,   and there is a distance 

dependent change also due to the process of diffusion. 

We have to remember that in a semiconductor, there is a continuous generation and 

recombination of mobile carriers at each and every point within the semiconductor (see Chapter 

9, Sections 9.1 and 9.2). 
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It is assumed that the reader is familiar with the two types of carriers in a semiconductor: n- and 

p- type and with the processes of generation, recombination, diffusion, and drift in 

semiconductors (see Chapter 9 and Appendix E and also Ref.[17, 30]). 

Before we discuss the derivation of the expression of continuity in a p-type semiconductor, we 

examine the nature of current and its definition. 

The electric current across a surface S in space having a finite or infinite area is defined as the 

rate at which electric charge moves across S and is given by Eq. (11): 

                                                         (11) 

Here the symbol I stands for the electric current, while dq is the infinitesimal amount of electric 

charge that has crossed S in the infinitesimal time interval dt. In this definition we have pictured 

dq/dt as the limit , where ∆q is the finite increment of charge crossing S in time 

∆t.  

One may equally well consider the form dq/dt as the derivative of a function q(t) expressing the 

total algebraic quantity of charge which has crossed S in time t. It is this form of the current 

definition which will be useful in our application of the conservation of charge principle to a 

semiconductor. 

The definition of Eq. (11) is strictly speaking that of instantaneous current, although this 

adjective is usually omitted except in description of a-c circuits where special terms are to be 

defined anyway.  

An average current across S would be simply 

                                                         (49) 

for the finite interval of time ∆t. 

If we disturb the equilibrium concentrations of carriers in a semiconductor material, the 

concentration of holes or electrons will vary with time. In the general case, however, the carrier 

concentration in the body of the semiconductor is a function of both time and distance.  

This is due to the three processes of generation, recombination and diffusion which occur in 

semiconductor devices. Generation and recombination are time dependent processes while 

diffusion is a carrier concentration gradient and distance dependent process. 

We will now apply the principle of conservation of charge to obtain the continuity equation 

(remembering that this relates the charge and current density functions) of a semiconductor 

(Ref.[17]). 
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Consider the infinitesimal element of volume of area A and length dx within which the average 

hole concentration is p. 

If τp is the mean lifetime of the holes, then p/τp equals the holes per second lost by recombination 

per unit volume. If e is the electronic charge, then, because of recombination, the number of 

coulombs per second 

 Decreases within the volume =      (50) 

If g is the thermal rate of generation of hole-electron pairs per unit volume, the number of 

coulombs per second 

 Increases within the volume =      (51) 

Due to the process of diffusion in a carrier concentration gradient and drift in the presence of an 

electric field, in general, the current will vary with distance within the semiconductor.  

If as indicated in the figure, the current entering the volume at x is I and leaving at x + dx is I + 

dI, the number of coulombs per second 

 Decreases within the volume = dI      (52) 

The hole current itself is a combination of the processes of drift and diffusion which we will 

soon account.  

Due to the three effects of recombination (Eq. (50)), generation (Eq. (51)), diffusion and drift 

(Eq. (52)), the hole density must change with time, and the total number of coulombs per second  

 Increases within the volume =        (53) 

 

 

I 

p holes/m
3
 

x x + dx  

Area A 

I  + dI 
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Since charge must be conserved, 

     (54) 

 Rate of       Rate of   Rate of    Variation of  

 hole buildup      recombination generation    current with distance 

 

The hole current is the sum of the diffusion current and the drift current (the reader may refer to 

Appendix E and also Ref.[17]), or 

         (55) 

where Dp is the diffusion constant for holes, μp is the mobility for holes and E is the applied 

electric field intensity within the volume. If the semiconductor is in thermal equilibrium with its 

surroundings and is subjected to no applied fields, the hole density will attain a constant value po.  

Under these conditions, I = 0, so that, from Eq. (54) 

          (56) 

The equation indicates that the rate at which holes are generated thermally just equals the rate at 

which holes are lost because of recombination under equilibrium conditions. Combining Eqs. 

(54), (55) and (56) yields the equation of conservation of charge, or the continuity equation 

       (57) 

The application of the conservation of charge principle to obtain the equation of continuity for a 

semiconductor may be considered the most general case where variations of carrier 

concentrations (volume charge densities) are seen with both time and distance even in the steady-

state.  

Note that the volume charge density of holes p is a function of both time and space (condition 

( , Eqs.(54) & (55)) unlike the case of the mobile carrier (electron) densities in metallic 

conductors which is uniform in both time and space in an idealized continuous approximation 

(condition  Eq.(40)).  

Most textbooks discuss the solutions to the continuity equation of semiconductors (Eq. (57)) with 

special cases (Ref.[17]);  

i) concentration independent of x with zero electric field, and  
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ii) concentration independent of t and with zero electric field. The details of the analysis carried 

out will not be discussed here.  

But, the salient features of the analysis are that an “excess” concentration of holes (volume 

charge density) for case (i) produced by say a short dose of radiation uniform over the sample, 

decays with a time constant τp, the mean lifetime of the holes.  

In case (ii), an “excess” injected concentration of holes p produced by a dose of radiation at one 

end of the p-type sample causes the “excess” volume charge density to decay to the equilibrium 

concentration po with a “distance” constant Lp = .  

If a p-type semiconductor sample is connected to a battery, a steady current will be established 

by surface and interface charges which produce a field in the sample and the holes are 

neutralized at the contact surfaces of the sample with the battery by electrons supplied by the 

battery.  

Again, by a volume charge density of electron movement (start-stop motion of millions and 

millions of them, Drude model) within the wires connected between the battery and the 

semiconductor contact surface ! The motion of the electrons and holes in the semiconductor 

sample is also a start-stop motion of the carriers and the Drude model maybe applied to both 

types of carriers. 

Summary 

The continuity equation relates the charge and current density functions. The conservation of 

charge principle when applied to metallic conductors gives a continuity equation  

         with condition  (41)  

from which we learn that the amount of electric charge in any volume of space can only change 

by the amount of electric current flowing into or out of that volume through its boundaries and 

the reader is cautioned to note that the equation is an idealized continuous approximation of the 

microscopic processes involved.  

The conservation of charge principle when applied to a cylindrical conducting shell of radius a 

gives a continuity equation 

        (48) 

where  is the surface current density in Coulombs/per metre
2
. 

The conservation of charge principle when applied to the propagation of time-varying signals, 

the transient and quastatic conditions and in the sinusoidal steady-state (other than DC steady -



Page 21 of 44 

 

state situations) in resistive, capacitive and inductive circuits such as transmission lines, 

waveguides and in Antennas, the general form of the equation of continuity 

                  (29)   

is applicable. This is due to the accumulation and dispersion of surface charges and the processes 

of charge delivery and removal mechanisms that are found in such situations. 

The conservation of charge principle when applied to semiconductors (p-type) gives a continuity 

equation 

     with condition  

          (57) 

      Change of carrier       generation minus         Difference between incoming  

      density over time        recombination         and outgoing current 

 

from which we learn that a change in carrier density (volume charge density) over time is due to 

the difference between the incoming and outgoing current plus the generation and minus the 

recombination. 

For a very interesting electrostatic experiment with a diode and an electroscope see Chapter 3, 

Section 3.3.7, “Orientation of the Body Relative to the Applied Voltage” in the book “The 

Experimental and Historical Foundations of Electricity- Volume 2” by Andre. K. Assis. A link to 

the book is given in the file “Recommended_books_for_libraries” in the CD along with the 

book. 

In the next section we discuss the propagation of electromagnetic signals in wires according to 

Weber‟s Electrodynamics. 
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2. Propagation of Electromagnetic Signals in Straight Wires using 

Weber’s Electrodynamics 
 
Number references (superscript) are listed at the end of the article. 

The theory and practice of electrical and electronic circuits involves the propagation of signals 

from a source to a destination. For example, a signal source which maybe a microphone, a 

pressure sensor, the electrode of an ECG (electro-cardio-graph) machine, or a computer sends 

signals through connecting wires or maybe transmission lines to a destination which maybe an 

amplifier, or another computer or a receiving station.  

Our goal is to understand what processes enable the signals to propagate in the wires. The wires 

are conductors comprising lattice ions and mobile conduction band electrons and the signals are 

a flow of variable current in the wires, remembering that a steady dc current is not capable of 

carrying data. 

From Newton`s second law of motion plus Weber`s electrodynamics
 (1)

, we derive the 

equation describing the flow of a variable current in straight wires and show that the signal 

propagates at light velocity under certain conditions.  

Recall from the section “Dispelling Misconceptions about Action-at-a-distance theories” in 

Appendix B that Weber‟s Fundamental force law (Ref.[36,38]) for charged particles, is an 

action-at-a-distance theory, without the idea of a field. According to it, the interacting forces and 

energies depend only on the relative radial distance, velocity and acceleration between them. 

Weber‟s force on the line connecting the two interacting charges, obeys Newton‟s action and 

reaction law. It complies with the principles of the conservation of linear momentum, angular 

momentum and energy. 

It would do well to remember A. K. T. Assis‟ statements on the validity of Webers‟ 

Electrodynamics given in Appendix B especially regarding Fechner‟s hypothesis. Assis has 

dismissed the contention of several scientists that since, Weber‟s force was developed from 

Ampere‟s force based on Fechner‟s hypothesis which states “the positive and negative charges in 

metallic wires move in opposite directions with equal velocities”, therefore, Weber‟s 

Electrodynamics is wrong. 

Assis shows “if we assume only Weber's force and the neutrality of the current elements we can 

still derive Ampere's force even when Fechner's hypothesis is wrong, as is the case in the usual 

metallic conductors [in which the mobile charges are only the electrons]. The proof of this 

Section overcomes this limitation pointed out against Weber's electrodynamics as it is based on 

general assumptions more general than the particular case specified by Fechner's hypothesis.” 

Assis proceeds to give the proof in Chapter 4 of “Weber‟s Electrodynamics” (Ref.[42]). 
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Weber and Kirchhoff, working independently of one another, but both utilizing Weber's 

electrodynamics, predicted the existence in a conducting circuit of negligible resistance of 

periodic modes of oscillation of the electric current whose velocity of propagation had the same 

value  as the velocity of light. This result was independent of the cross section of the 

wire, of its conductivity, and of the density of electricity in the wire.  

Kirchhoff's work “On the motion of electricity in Wires” was published in 1857 in Poggendorff‟s 

Annalen with the English translation published in the Philosophical Magazine and Journal of 

Science. Another paper by Kirchhoff “On the motion of electricity in Conductors” was also 

published in 1857 in Poggendorff‟s Annalen but it was only in 1994 after a gap of nearly 137 

years that it‟s translation by Prof. A.K.T. Assis was published. Weber's simultaneous and more 

thorough work was delayed in publication and appeared only in 1864 
(1, Chapter 3, Section 3.1)

. 

Assis independently published a paper in the Foundations of Physics, Vol. 30, No. 7, 2000 titled 

“On the Propagation of Electromagnetic Signals in Wires and Coaxial Cables According to 

Weber‟s Electrodynamics” in the year 2000 (Available: 

https://www.ifi.unicamp.br/~assis/Found-Phys-V30-p1107-1121(2000).pdf ) which is based on 

Kirchhoff‟s papers cited above. The derivation presented below is based on Assis‟ paper with a 

few annotations and is given for the case of propagation in straight wires. 

Derivation of Ampere’s Force law of the force between current elements from Weber’s 

Force Law between charge elements 

It would be instructive for the reader to practice the derivation of Ampere‟s Force between 

current elements equation starting from Weber‟s Force law between charge elements before 

studying the section on the propagation of electromagnetic signals in wires. This is provided in 

Section 4.2 of Weber‟s Electrodynamics
(1)

.  

The reader should make use of the notations of Eqs. 3.10
(1)

 and 3.14
(1)

 while following the steps 

to obtain Ampere‟s Force equation Eq. 4.24
(1)

 which is  

        

starting from Weber‟s Force Eq. 4.16
(1)

 (see errata
(1)

) 

  , 

making note of the role of Eq. 4.23
(1)

 in converting the velocities multiplied by charge elements 

into current elements.  

The above derivation of Ampere‟s Force between current elements from Weber‟s Force between 

charge elements will enable the reader understand the manner in which the velocity and 
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acceleration of the charge have transformed into the currents in Ampere‟s Force law while noting 

the acceleration terms which exist in Eq. 4.16 do not appear in Eq. 4.24, although we did not 

impose any conditions on , , and . This indicates that Ampere's force remains valid 

even in non stationary situations in which the charges are accelerated, not only due to the 

curvature of the wires (centripetal accelerations), but also when the intensity of the currents are 

a function of time (time-varying currents) as is the case in alternating current circuits, or when 

we turn on or off the current in a circuit 
(1, Sec. 4.2)

.  

The most important remark is that to arrive at Ampere's force from Weber's force no conditions 

were imposed on , ,  . These four velocities are each one of them arbitrary and 

independent from one another. This means that Eq. 4.24
 (1)

 is still derived from Eq. 4.16
 (1)

 even 

in metallic circuits in which the positive charges are fixed in the lattice ( ,  ) and 

only the moving electrons are responsible for the currents. This will also happen when the 

positive and negative charges move in opposite directions with velocities of different magnitudes 

as in situations of electrolysis, or in the usual gaseous plasma where the ratio between the 

velocities of the positive ions and of the electrons is as the inverse ratio of the masses
(1, Sec. 4.2)

. 

It is recommended that the reader derive Eq. 4.50
(1)

 starting with Eq. 4.36
(1)

 to obtain the force 

exerted by a closed circuit of arbitrary form on a current element of another circuit and proceed 

to Eq. 4.52
(1)

:        

to obtain the force in terms of the magnetic field which is described by Eq. 4.75
(1)

, which is  

      where         

This will enable the reader understand the origin of the cross product in the Lorentz (magnetic) 

Force law. 

The derivation of the equation of electromagnetic signals propagating in straight wires 

There are three kinds of source charges in the wire exerting electromagnetic forces on the test 

one q1:  (A) Free charges over the surface of the wire,  (B) the stationary positive lattice making 

the body of the wire, and  (C) the moving conduction electrons along the body of the wire which 

constitute the current. We consider separately each one of them.  

A) When current flows in a resistive wire connected to a battery or other power supply, the 

electric field driving the conduction electrons against the resistance of the wire is due to free 

charges distributed along the surface of the wire. This was first pointed out by Kirchhoff 
(2,3,4)

 

(with English translation
(5)

) and further analysed by Sommerfeld
(6, pp 125-130)

, Jefimenko
(7)

, 

Heald
(8)

, Jackson
(9)

 and many others.  

Since there cannot be zero resistive wires unless they are superconductive, in most situations in 

the real world there will be an electric field present to drive the conduction electrons. 
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The power supply or battery creates and maintains this distribution of free charges (free charges 

are excess charges over the combined “neutral” wire composed of lattice ions and conduction 

electrons). Fig. 1 shows a cylindrical wire in which an electromagnetic signal propagates and the 

surface charges that act on a test charge q1. 

 

 

Fig. 1 (not to scale) Qualitative representation of the free surface charges with density σf 

(Coulombs/m
2
) which generate the electric field inside and outside the wire. They exert a force 

on a test charge q1 located at  and moving with velocity  and acceleration  relative to the 

center of the wire. 

The surface density of these free (or, excess) charges is represented by σf (z,t). To calculate the 

force exerted on the test electron q1 by all the free charges present, we integrate the force by a 

charge element  over the surface of the wire of radius a.  Here υ2 is the 

poloidal angle varying from 0 to 2π, a dυ2 is an element of arc and dz2 is an element of length 

along the wire. 

B) The stationary positive lattice also exerts force on the test charge. Fig. 2 shows a charge 

element dq2+ of the lattice located at r2 and whose volume charge density is represented by ρ+.  

 

a 

z1 
r1 

q1 

r1- r2 
r2 

r1 
acosφ2 φ2 0 

z2 

a asinφ2 

σf 

dz2 

− /2 + /2 
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Fig. 2 (not to scale) A stationary lattice charge dq2+  is situated in the body of the wire located at 

. 

For the homogeneous wire considered here, ρ+ is constant over the wire and does not depend on 

time. We need to integrate the force on q1 due to dq2+ = ρ+ r2 dυ2 dz2 located at a distance r2 

from the axis of the wire over its volume. 

 

C) The moving conduction electrons also exert force on the test charge q1. Their volume charge 

density for the case of Fig. 3 is represented by ρc−. For the homogeneous wires considered here 

ρc− is constant over the wires and does not depend on time, similar to the case of ρ+.  The 

velocity and acceleration of the conduction electrons at a time t in a cross section located at z2 

are represented by  and , respectively. We need to integrate 

the force on the test charge q1 exerted by a charge element dqc− = ρc− r2 dυ2 dr2 dz2 located at a 

distance r2 from the axis of the wire over its volume. 

a 

ρ+ 

z1 
r1 

q1 

r1- r2 
r2 

r1 
φ2 

dz2 

0 

z2 

− /2 + /2 
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Fig. 3 (not to scale) Conduction charge element  located at , moving with velocity 

 and acceleration . 

 

As a first approximation we assume that the charge density of the conduction electrons is equal 

and opposite to the charge density of the positive lattice, namely 

ρc−  =  − ρ+    (1) 

 

In order to integrate these three forces we utilize Weber‟s electrodynamics. According to 

Weber‟s force equation, the force exerted by a charge element dq2 located at , moving with 

velocity and acceleration  on a point charge q1 located at , moving with velocity  and 

acceleration  is given by Eq. 3.24 
(1, Chapter 3)

 and it would be instructive for the reader to 

derive this equation using Eqs. 3.13 and 3.14
(1)

 

   (2) 

where  = 8.85 × 10
−12

 C
2
∙N

−1
∙m

−2
 is the permittivity of vacuum, c = 3 × 10

8
 m∙s

−1
, 

, , ,  and  is the unit vector pointing from 

2 to 1. 

After calculating the force on a generic test charge we consider it to be a conduction electron. 

With Newton‟s second law of motion F = ma we get one equation with two unknowns, the 

a 

ρc− 

z1 
r1 

q1 

r1- r2 
r2 

r1 
φ2 

dz2 

0 

z2 

− /2 + /2 
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current and the density of free electricity (excess charge). The other equation connecting these 

two unknowns is that for the conservation of charges. With these two relations we then obtain 

the equation describing the propagation of electromagnetic signals in wires according to Weber‟s 

electrodynamics. 

Straight Wire 

Consider the straight wire of radius a and length l >> a as shown in Figs. 1 to 3. We suppose a 

symmetrical current density , where the z axis has been chosen along the axis of the 

wire with z = 0 at its center (Figs. 1, 2 and 3 are not drawn to scale). We consider cylindrical 

coordinates (r, υ, z), with r being the distance of the charge to the axis of the wire and not to the 

origin of the coordinate system (we do not employ the usual notation „ρ‟ in the cylindrical 

coordinates to avoid confusion with the charge density).  

As pointed out above, our procedure will be to integrate Eq. (2) for the force acting on the test 

charge q1 due to the coulombian, velocity and acceleration terms. The charges exerting the force 

will be the surface charges with density σf, the positive lattice with density ρ+, and the 

conduction electrons with density ρc−. We begin with the force exerted by the free (or, excess) 

surface charges on the test charge. 

Forces exerted by the free (or, excess) surface charges on the test charge 

As we are considering only the symmetrical situation in which the surface current does not 

depend on υ, the same will happen with the free surface charge density: σf  = σf (z, t). 

Accordingly the force on the test charge q1 cannot depend on its poloidal angle υ1. To simplify 

the calculations without any loss of generality we consider it located at υ1 = 0, so that 

, with velocity  and acceleration . 

Instead of integrating directly the coulombian force it is easier to integrate the electric potential 

and then obtain the force by taking the gradient of this potential as was done by Kirchhoff.  

Force on test charge as gradient of potential 

The formula that Kirchhoff or Weber would have used is  based on Action-at-a- 

distance principles (no field). This was the approach employed by Kirchhoff and we follow it 

here. (Recollect from the beginning of Appendix A that the electric field  (in 

Newtons/Coulomb) is  where  is the force acting on charge q.  Since the electric field is 

the gradient of potential V i.e. , then ). 
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The coulombian potential (r1, z1, t) where this test charge is located, due to the free (or, 

excess) surface charges in the current carrying wire, is then given by (with  

located at   

   

 =  

=     (3) 

Defining 

, 0 ≤r1 ≤ a and  this can be written as  

    

Kirchhoff was able to solve these integrals utilizing the approximations 

 l >> a   l >> r1   and        (4) 

The main ideas of Kirchhoff‟s approach are presented although not Kirchhoff‟s exact steps and 

derivation.  

For any given r1 and υ2 the maximum value of  is at u = 0 i.e . For 

 far from  the value of u will be of the order l/a >> 1 due to the approximation (4). This 

means that  will be close to zero if  is far from , as s is of the order of unity. This 

is because from  with 0 ≤ r1 ≤ a we have 0 ≤ s
2
 ≤1. 

Because when  is far from , the integrand is close to zero, it can be neglected. But, the 

integrand has a large value when . Making this brilliant deduction for an approximation, 

Kirchhoff could remove  from the integrand by taking its value at  = , because 

whatever the value of  at other locations, it will not affect the integrand significantly for 

reasons cited above. 

We are then led to the approximate result 

                           (5) 

We label the double integral I and with the approximation   : 
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         (6) 

where . 

Integration with respect to u and putting the above and lower limits yields (refer steps here 

“Integration of 1/ sqrt (x^2+a^2)dx” https://www.youtube.com/watch?v=MWfA85-Mb50 ) 

         (7) 

From the definition of  and , we can write  

  . 

According to Eq. (4)  

l >> a   l >> r1   and         

From these last two equations l/2a >> s
2
, so that the numerator of Eq. (7) becomes 

 . 

The denominator of Eq. (7) becomes analogously 

  

Then, using Maclaurin‟s series expansion (Refer “Maclaurin Series of Sqrt(1+x) “ 

https://www.emathzone.com/tutorials/calculus/maclaurin-series-of-sqrt1x.html ) 

this becomes 

 . 

Therefore, Eq. (7) is  

  

   

   

     



Page 31 of 44 

 

      (8) 

This last integral (in Eq. (8)) is equal to zero if r1 ≤ a. If r1 > a, we can put  in evidence 

and utilize once more this result to solve the last integral, namely: 

      if r1 ≤ a (9) 

      for a test charge located in the body of the wire 

     if r1 ≥ a (10) 

for a test charge located outside the body of the wire. Note: Eqn (9) can be verified numerically 

using Mathematical softwares by setting limits  = 10
-7

 to 2π - 10
-7

 and giving several values 

of   < 1 to show the result is null. With this result, Eqn (10) follows putting  in evidence. 

This means that the final value of the integral I defined by Eq. (6) is found to be  

        if r1 ≤ a  (11) 

        if r1 ≥ a  (12) 

Therefore, we can write the solution to Eq. (5) as 

         if r1 ≤ a  (13) 

        if r1 ≥ a  (14) 

The coulombian force is then given by ( , see “Force on test charge as gradient of 

potential” above)  

 

Forces on the moving test charge  

Later on we consider the contribution to this force due to the motion of the test charge and of the 

free surface charges showing that they are negligible. These last two equations (Eqs. 15 and 16) 

are then the expressions for the force on the test charge due to the free surface charges. 

             if r1 < a  (15) 

           if r1 ≥ a  (16) 
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Forces exerted by the positive stationary lattice and the conduction electrons on the test 

charge 

We turn now to the force on the test charge due to the positive stationary lattice and to the 

conduction electrons. As the lattice is at rest we have  and . According to 

Weber‟s Force equation (Eq. (2)), the force of the lattice of Fig. 2 on the test charge q1 is then 

given by: 

   

           (17) 

Before integrating this force we consider the force on the test charge due to the moving 

conduction electrons Fig. 3 (with velocity  and acceleration ). From Eq. 2 this is given by: 

    

     (18) 

We need to integrate these forces over the volume of the wire of Figs. 2 and 3. To this end we 

replace  by  and  by . Due to our approximation 

Eq. (1) that the wire is essentially neutral, except for the surface charges considered above, we 

can then add Eqs. (17) and (18) with consideration that the forces of the lattice and the 

conduction electron are opposite in direction on the test charge.  

In the equations (17) and (18), the relational quantities of direction, velocity and acceleration viz. 

,  and  are expanded using the relations in the para below Eq. (2) before addition. 

The coulombian term and the terms proportional to , to  and to  cancel out. 

The remaining terms are (with  and taking out of the integral the constant ): 

32 12∙ 2−2− 12∙ 2− 2 2 2 2           (19) 

The terms proportional to  and to  are usually small compared to the coulombian 

forces Eqs. (15) and (16). Moreover, they point towards the radial direction 
(10)

. The radial 

electric field is also called motional electric field and is predicted by Weber‟s law. It is not 

predicted by classical electromagnetic theory. As we are interested only in the longitudinal 

propagation of the signal we will neglect these terms.  
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The terms depending on  and  give rise to the magnetic force 

, 
(1, Secs. 6.6 and 7.4) and (11,12)

. The reader should note that the magnetic field B in the 

references cited is an “external” magnetic field B while the magnetic field B due to the velocity 

squared terms  and  is an internal magnetic field. This should 

not be deemed to violate the rule that a current carrying wire cannot exert a force on itself (see 

Chapter 6 of “Fundamentals of electric theory and circuits” below Fig. 6), because Weber's law 

complies with Newton's third law and the sum of ALL internal forces will always go to zero. The 

reader is advised to check the derivation which gives rise to the magnetic field in Weber‟s force 

law in the section “Derivation of Ampere‟s Force law from Weber‟s Force Law” above and the 

derivation of the field B from the velocity while making note of the role of Eq. 4.23
(1, Chapter 4)

 in 

converting the velocities multiplied by charge elements into current elements.  

As the current is in the longitudinal direction , the magnetic field will be in the poloidal 

direction . The test charge considered here will be a conduction electron moving in the 

direction, so that  will be in the radial direction . As we are interested only in the 

longitudinal propagation of the signal along the z direction, we will not consider these terms 

either.  

We then need to take into account the acceleration term. As we are considering a straight wire 

with  and  , this term will appear when there is alteration 

of the strength of the current (acceleration of the conduction electrons).  

With  and  this term can be written as  

           

     (20) 

Integrating in  the y component goes to zero. Once more with Eq. (4) and Kirchhoff 's great 

idea of approximation we remove  from the integrand taking its value at , 

yielding 

           

       (21) 

Integrating in  the x component goes to zero, as we are supposing l >> |z1|.   

Calling  and  we are then led to: 
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          (22)      

These integrals can be solved utilizing the approximation in Eq. (4). 

Let J        (23) 

where ..  

The indefinite integral in m (refer  “Evaluate integrate x^2/(x^2 + a^2)^(3/2) dx “ 

https://www.youtube.com/watch?v=is_KZjs58c0 ) yields 

   

From approximation Eq. (4) and taking the two limits of the integral in m we are led to  

    J   

 

                          (24) 

From Eqs. (9) and (10) we can solve this last integral, yielding  if r1 ≤ a 

or  if r1 ≥ a. Utilizing once more the approximation (4) we are then led to: 

              if r1 ≤ a  (25) 

              if r1 ≥ a  (26) 

Therefore, the solution of Eq. (22) is  

 

 These equations can be written as  

                               if r1 ≤ a                  (27)     

                             if r1 ≥ a                  (28)     
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            (29) 

where  

      if r1 ≤ a                    (30)      

      if r1 ≥ a                    (31)      

and 

 

Here  is the total current through the cross section πa
2
 in z = z1, at the time t.  

The force of free (or excess) charges due to their acceleration on the test charge 

Up to now we included the forces on a test charge due to the free electricity (or excess charges) 

considered at rest and to the motion of the conduction electrons. We might think that the free 

electricity is moving together with the conduction electrons, so that we would need to calculate 

the force of this free electricity on a test charge taking into account the acceleration of . If this 

is done, we obtain essentially Eqs. (27) and (28) with  replacing .  

The density of conduction electrons in a typical metallic conductor is of the order of one electron 

per atom, yielding: |ρc−| ≈ 10
10

 C ∙ m
−3

. We can estimate  observing that in linear conductors it 

is a linear function of the axial coordinate
(8)

. For instance, consider a coaxial cable of inner 

radius a and outer radius b, with conductivity g. Then the surface charge density of the inner 

conductor  when it is flowing a current I is given by (see Sommerfeld‟s Electrodynamics
(6, pp. 

125-130)
: . With a copper wire of inner radius 1 mm, outer radius 2 mm, 

carrying a current of 100 A the charge density at the large distance of 100 m is only  10
−7

 

C/m
2
. We then have  C/m

2
 <<  10

7
 C/m

2
.  

This means that in these calculations it does not matter if this free electricity is moving or not 

with the conduction electrons. The effect of their motion is negligible compared with the effect 

of the moving conduction electrons. We can then say that all relevant electromagnetic effects 

have been taken into account here.  

                                              (32) 

                                         (33) 
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The frictional (or resistive) force of the moving test charge 

We now suppose the test charge to be a conduction electron: q1 = −e =  −1.6 × 10
−19

 C, 

 and . In this case we must also include the frictional force due to its 

collisions with the lattice (see “Working definition of Current” in Section 1.18 Visualizing 

Current and Neutrality in Conductors in “Fundamentals of Electric Theory and Circuits”). The 

average value of this force can be represented by , where the coefficient of friction b is 

given by ,  being the conductivity of the wire
(13, Sec. 7.7 and 14, 

Introduction)
. Writing the resistance R of the wire of radius a as  this can also be 

written as .  

We can now write down the z component of the equation of motion for a conduction electron 

applying Newton's second law of motion . Considering the frictional force plus Eqs. 

(15), (27) and dropping the subscript 1 yields:  

   

           Eq. 15 (force of free                      Eq. 27 (combined force of lattice ions  

        (excess) surface charges)               and conduction electrons, a neutral system) 

                                                  

          (34) 

        Frictional force due to collision of Acceleration of the test charge            

conduction electrons with the lattice  (conduction electron) of mass m due to the      

                                                             combined effect of all the forces on the LHS 

 

Usually  
(14)

 so that we can neglect the term ma2− in this equation. 

For instance, for a one meter wire with one millimeter diameter we have, with  e = 1.6 × 10
−19

 C, 

and  C∙m
-3

,  2×10
−21

 kg, which is much greater than the 

electron mass m = 9 × 10
−31

 kg.  

With Eqs. (32) and (33) this equation can then be written as (multiplying it by  

and utilizing ): 

          (35) 

There are two unknowns in this equation,  and I. In order to relate them we utilize the equation 

for the conservation of charges, . For the case considered here of a current 

flowing in the z direction over the cross section πa
2
 of the wire of radius a, this is equivalent to: 
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         (36) 

See “The continuity equation for the surface current of a cylindrical conductor” in Section 1. 

Applying  in Eq. (35), multiplying it by −2πa and utilizing Eq. (36) yields: 

         (37) 

This is the equation of telegraphy, which will also be satisfied by , by  and by the z 

component of  at r = a, . 

If the resistance of the wire is negligible, Weber's electrodynamics plus Newton's second law of 

motion predicts a current flow obeying the wave equation. That is, with a signal propagating at 

light velocity. 

Comparison of the motion of em signals in wires with transverse vibrations of strings 

Consider a string of mass M stretched between two points at x = 0 and x = L as shown in the 

Fig.4.  

 

Fig. 4    The string is pulled upward and released. 

Consider that the string with initial tension T is stretched by an amount ∆L by pulling it up and 

then released. Let the lateral displacement be given by Y(x,t).  

The equation of transverse vibration of the string is   

                                              (38) 

where . is the velocity of the traveling wave on the string. The molecules do not move 

from left to right. They merely move up and down creating the illusion of a wave traveling.  

A comparison of Eqs. (38) and (37) prompted Kirchhoff to write in his paper Poggendorff‟s 

Annalen (1857) No.2 translated into English and published in the Phil. Mag. S.4.Vol. 13 No. 88, 

L 

Y 

0 

v 

x 
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June 1857 that the motion of electricity in wires  is quite similar to the propagation of a wave 

[transverse vibrations] in a tended [taut] wire. 

 

Weber’s Potential Energy 

Weber presented a formulation of the potential energy for charged particle interactions. It was 

the first example of a force between charges which depended not only on the distance between 

them but also on their velocities.  

    

The first term of this energy is the usual Coulombian potential energy. The second term is a 

mixture of kinetic and potential energies because it depends not only on the distance between the 

charges but also on their velocities
(1, Section 3.3)

. 

 

Difficulties with the Maxwell-Lorentz electrodynamics (Classical electrodynamics) 

According to Maxwell-Lorentz electrodynamics, the force on an element of volume d
3
r at  

containing a charge and current density ρ and  is given by the Lorentz force  

      

                Total force           Coulombic  electromotive        Lorentz (magnetic)  

                      (39) 

where  and , are the scalar and (magnetic) vector potentials. 

In terms of moving charges, the Maxwell-Lorentz force on a charge q with velocity  at  due to 

a charge q' with velocity  at  is given by 

 

          (40) 

where  is the line joining the two charges 
(15)

.  

It may be seen from the second and fourth terms on the right of Eq. (40) that the Maxwell-

Lorentz force between two point charges violates Newton's third law; as these forces do not act 

along the line  joining the two charges, and interchanging primes and unprimes does not yield 

merely a change in sign. It should be remarked that a failure to obey Newton's third law is a very 
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serious matter; as it implies impractical consequences and actions, such as the violation of the 

conservation of energy, ability to propel a space craft using only forces internal to the space craft 

itself, and the ability to lift oneself by one‟s own boot straps. Even a casual glance at Eq. (40) is, 

thus, sufficient to show that the Maxwell theory cannot be based solely upon the forces between 

isolated point charges, in contrast to the Weber theory. In addition, Eq. (40) does not agree with 

the experimental evidence which will not be described here but details are available 
(15, Sections 4, 

5, 6, 7 and 8)
.  

Limitations of Maxwell theory 
(15)

 

The Maxwell theory, being incapable of prescribing the correct force between two moving point 

charges, cannot be regarded as a fundamental theory. The special situations and limiting 

conditions under which the Maxwell theory works are  

1) The interaction between moving point charges must not be involved. 

2) Macroscopic quantities of material and macroscopic distributions of charge must always be 

assumed. 

3) A source must be confined to a finite volume, and it must vanish on the surface of this 

volume. 

4) A detector must be confined to a finite volume, where source and detector do not occupy the 

same volume. 

5) Source currents must form closed current loops so that  = 0. 

6) The force on an accelerating charge or time varying current due to a static charge distribution 

must not be involved. 

7) Induction must be limited to closed current loops due to the net time rate of change of the 

magnetic flux through the loop. 

8) Induction in only a portion of a closed loop cannot be involved. 

9) Induction in open circuits cannot be involved. 

In contrast, the Weber theory, being a fundamental theory based upon the interaction between 

two moving charges, appears to have no limitations at all. 

 

It maybe shown
1
 that Weber‟s Force can be used to obtain Ampere‟s force between current 

elements, Gauss‟s Law, Lorentz‟s force and Faraday‟s law.  
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Using Weber’s electrodynamics to obtain Maxwell’s equations
(1)

 

When using Weber‟s Electrodynamics to obtain the full set of Maxwell‟s equations the following 

should be borne in mind: 

1) Gauss‟s law 
(1, Section 3.2)

: .  In applying Weber‟s Force to obtain Gauss‟s Law, Assis 

(1, Chapter 8, Section 8.1)
 mentions that the proof is valid only when there is no motion between the 

charges. If charge motion is assumed, Weber‟s force predicts a motional electric field 
(10)

 which 

violates Gauss‟s Law. 

2) Non-existence of magnetic monopole 
(1, Section 4.7)

: . This equation can be derived 

from Weber‟s force through the integrated form of Ampere‟s force (force of a closed circuit on a 

current element) only when there is charge neutrality of the current elements and does not take 

into account the presence of say, surface charges. Secondly, in Ampere‟s force the circuit was 

assumed to be closed and did not take into account currents in open circuits as in the case of the 

charge and discharge of a capacitor. 

3) Faraday‟s Law 
(1, Section 5.3)

: . Again in deriving Faraday‟s law from Weber‟s 

Force or potential energy 
(1, Section 5.3)

, it was assumed that the circuits were closed and is not 

valid for open circuits. 

4) Magnetic circuital law 
(1, Section 4.7)

 or Ampere-Maxwell law (Chapters 5, Section 5.22): 

. Remember that Faraday‟s Law and the Ampere-Maxwell law are both 

necessary for the propagation of electromagnetic waves in space (Chapter 10, Sections 10.2 and 

10.10). In the derivation 
(1, Section 4.7)

 of this equation from Weber‟s force, it was supposed that 

the circuits were stationary and the distance between charges did not depend on time.  

According to J. P. Wesley
 (15)

, Maxwell‟s electrodynamic theory is a generalization of slowly 

varying effects and yet does not correctly predict a few effects. For example, Maxwell‟s 

electrodynamics fails to explain the force on Ampere‟s bridge, the tension required to rupture 

current carrying wires, the force to drive the Graneau-Hering submarine, the force to drive the 

oscillations in a current carrying mercury wedge 
(15)

, and unipolar induction 
(16,17)

. Also see Fig. 

3.4, Section 3.2, “Contradictions in traditional teaching”, in the article “A qualitative guide to 

electricity” by Hermann Härtel in the folder “Teacher‟s Guide” in the CD alongwith the book. 
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These effects are explained satisfactorily by Weber‟s electrodynamics, the details of which are 

available 
(15,16 and 17)

. 

 

Weber's Electrodynamics in Terms of Fields and application to radiation phenomena 

 

While Weber‟s electrodynamics is an action–at–a–distance theory, Weber‟s force law includes 

the quantity  and Weber was able to measure it and found it‟s value to be equal to light 

velocity. So, while the interaction is supposed to be instantaneous, each of the interacting 

charges has inertia so that their reaction to the applied force (acquired velocities and 

accelerations, etc.) is a function of their inertial masses.  

Let us not forget that Newton derived the propagation of sound at a finite velocity using action-

at-a-distance mechanics and d‟Alembert showed the propagation with a finite velocity of 

perturbations along a stretched string by its molecules using action–at–a–distance theory.  

These systems are many bodied and the interactions are instantaneous of the bodies having 

inertia. Thus, though the interaction of any two particles may be considered to be instantaneous, 

the collective behavior (macroscopic wave, etc) has a finite characteristic velocity as was shown 

in the derivation of Eq. 37. In principle therefore it should be possible to derive a finite velocity 

of light waves and electromagnetic waves with an action–at–a–distance theory. 

While Weber‟s Force is based on action–at–a–distance theory (without a field), an 

electromagnetic field appropriate to Weber‟s Force can be derived and this field may be 

extended to rapidly varying effects and radiation by introducing time retardation. 

The Maxwell field theory displaced the Weber action–at–a–distance theory toward the end of the 

last century; because the Maxwell theory predicted Hertz electromagnetic waves, and the Weber 

theory could not 
(16)

. The failures of the Maxwell theory for slowly varying effects (to explain 

the Ampere bridge for example) are seldom mentioned in textbooks.  

An action–at–a–distance theory can be represented directly in terms of the force between two 

particles, such as Weber‟s force 

            (41) 

or it can be represented in terms of intermediate fields. In the field representation a particle, or 

distribution of particles, is viewed as first giving rise to an intermediate field 
(15)

. It is then the 
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field that acts on another particle thereby giving rise to the observed force. Although these two 

representations may evoke different images of physical mechanisms involved; they are, in fact, 

mathematically isomorphic (when no time retardation is involved). 

The derivation proposed by J. P. Wesley 
(16)

 uses notation that may be confusing and Assis has 

rewritten the principal features using modern vector notation in Weber‟s Electrodynamics
(1, 

Chapter 8 Section 8.3)
. J. P. Wesley 

(16)
 began with Weber‟s force equation 

    

          (42) 

and rewrote it by replacing q by ρdV and  by  and then neglected the velocity squared forces 

to yield 

 

          (43) 

After integrating the resulting force equation over a fixed volume Vj he obtained 

 

          (44) 

where  and  are the usual electric (coulomb) and magnetic vector potentials and  and  are 

two new potentials. The operators (gradient) and  (cross-product) are to be applied at the 

position of charge 1, while  and  are the potentials due to the charges in volume V2.  

For full details and the definitions of the potentials  and , the reader may refer to the Chapter 

8, Section 8.3 in Weber‟s Electrodynamics
(1)

.  

The usual electric and magnetic fields are obtained from  and .  

Once having expressed Weber electrodynamics in terms of fields, it may be immediately 

extended to rapidly varying effects and electromagnetic radiation by introducing time 

retardation. This is done by replacing time in the equations for the potentials by the retarded time 

t* = t−R/c where  is the distance between the charges. Note: There have been 

attempts to introduce time retardation between two particles without an intermediate field, but 

these attempts have not been successful 
(15)

.  
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Certainly the Weber field theory is more complicated with its two additional field potentials  

and  in Eq. (44); so one might expect it to provide some advantages. A problem of predicting 

the self-torque on the Pappas-Vaughan Z-antenna provides an excellent test case 
(16)

. The Weber 

field theory predicts a zero self torque; whereas the Maxwell field theory (classical 

electromagnetic theory) predicts a sizeable nonvanishing self torque. However, results of an 

experiment by Pappas and Vaughan showed that there is zero self-torque which clearly indicates 

the correctness of the Weber theory for rapidly varying time retarded fields compared with the 

Maxwell theory. 

 

But then where are the particles or charges or many-bodied medium in a vacuum ? that could 

enable waves of electromagnetic fields to propagate ? 

Newer theories including photons may provide an answer and the task to explain radiation 

phenomena as observed in antennae and radio communication using Weber‟s electrodynamics 

whether in its original form or with modifications still remains to be done. 

For the present however, fields predicted by Maxwell‟s field theory are sufficiently accurate for 

the purpose of analysis of wave propagation and the design of antennas and waveguides. 
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